Order convergence

From WikiProjectMed
Jump to navigation Jump to search

In mathematics, specifically in order theory and functional analysis, a filter in an order complete vector lattice is order convergent if it contains an order bounded subset (that is, a subset contained in an interval of the form ) and if

where is the set of all order bounded subsets of X, in which case this common value is called the order limit of in [1]

Order convergence plays an important role in the theory of vector lattices because the definition of order convergence does not depend on any topology.

Definition

A net in a vector lattice is said to decrease to if implies and in A net in a vector lattice is said to order-converge to if there is a net in that decreases to and satisfies for all .[2]

Order continuity

A linear map between vector lattices is said to be order continuous if whenever is a net in that order-converges to in then the net order-converges to in is said to be sequentially order continuous if whenever is a sequence in that order-converges to in then the sequence order-converges to in [2]

Related results

In an order complete vector lattice whose order is regular, is of minimal type if and only if every order convergent filter in converges when is endowed with the order topology.[1]

See also

References

  1. ^ a b Schaefer & Wolff 1999, pp. 234–242.
  2. ^ a b Khaleelulla 1982, p. 8.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.